

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 195-201

Amino-substituted heterocycles as isosteres of *trans*-cinnamides: design and synthesis of heterocyclic biaryl sulfides as potent antagonists of LFA-1/ICAM-1 binding

Gary T. Wang,* Sheldon Wang, Robert Gentles, Thomas Sowin, Sandra Leitza, Edward B. Reilly and Thomas W. von Geldern

Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park Rd., Abbott Park, Il 60064, USA

Received 17 September 2004; revised 4 October 2004; accepted 4 October 2004

Abstract—2-Amino-4-phenyl pyridine and, to a lesser extent, 4-amino-6-phenyl pyrimidine, were established as isosteres of *trans*-cinnamide moiety. Applying this isosterism to previously reported *p*-arylthio cinnamides resulted in the identification of 4-amino-6-(*p*-arylthio)phenyl-pyrimidines and 2-amino-4-(*p*-arylthio)phenyl-pyridines as potent antagonists of LFA-1/ICAM-1 binding.

© 2004 Elsevier Ltd. All rights reserved.

Adhesion-mediated leukocyte emigration is a mechanism of host defense following inflammation, injury or infection.^{1,2} During this process, circulating leukocytes are attracted to the injury or infection site and cross the vascular endothelium wall to enter the surrounding tissues, where the leukocytes neutralize the pathogens and carry out regulated tissue destruction. However, over activation of this process leads to untoward tissue damage, as found in many inflammatory diseases and reperfusion injury such as ischemia following stroke, myocardial infarction and trauma. At the molecular level, the recruitment of leukocytes is primarily mediated by the interaction between leukocyte-function-associated antigen-1 (LFA-1, also known as CD11a/CD18 or $\alpha_v \beta_2$ integrin) on leukocytes and intercellular adhesion molecule-1 (ICAM-1, also known as CD54) on endothelial cells.^{1,2} Thus, inhibition of LFA-1/ICAM-1 binding represents a potential therapeutic target for these conditions.³

Our laboratories have reported several series of *p*-arylthio *trans*-cinnamides, represented by structure **1** and exemplified by compound **2** (Fig. 1), as potent antagonists of LFA-1/ICAM-1 interaction.³ Starting from a

Keywords: trans-Cinnamide isostere; Cell adhesion; LFA-1/ICAM-1 binding

high throughput screening lead, extensive medicinal chemistry effort led to the identification of several subseries of compounds with potent LFA-1/ICAM-1 antagonist activity, good solubility and pharmacokinetic properties. 4-7 During the course of the project, the metabolic stability of the trans-cinnamide moiety became a concern, since incubating one analog of p-arylthio transcinnamides with rat and human liver microsomes resulted in cinnamide isomerization and subsequent degradation. Thus, we undertook an effort to identify replacements of the trans-cinnamide moiety, even though it was ultimately proven that the cinnamide was sufficiently stable. Toward this end, diarylsulfide trans-cyclopropylamides 3 (Fig. 1) have been reported by Link et al.⁸ This class of compounds, in which the olefin bond of the cinnamide was replaced with a cyclopropyl ring, have been shown to have LFA-1/ICAM-1 antagonist activity comparable with the analogous cinnamides 1. Alternatively, we envisioned that properly substituted heterocycles depicted by 4 (Fig. 1), such as 4-amino-6-(p-arylthio)phenyl-pyrimidine or 2-amino-4-(p-arylthio)phenyl-pyridine, could serve as isosteres of 1. Based on both electronic and steric considerations, these moieties could potentially replace both the olefin bond and the carbonyl of the trans-cinnamide moiety. We report our findings in this paper.

Our attention was first focused on 4-amino-6-(p-arylthio)phenyl-pyrimidines 10 which were synthesized

^{*} Corresponding author. Tel.: +1 8479372489; fax: +1 8479355165; e-mail: gary.t.wang@abbott.com

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_6
 R_7
 R_7
 R_7
 R_7
 R_8
 R_8
 R_9
 R_9

Figure 1.

Scheme 1. (a) *o-iso*-Propyl thiophenol, Cs₂CO₃, DMF, rt 16h, 90–100%. (b) NaH, CO(OEt)₂, THF, rt 2h, 76%. (c) HC(NH)NH₂, 20% HOAc, DMF, 120°C, 3 days, 14%. (d) POCl₃, 60°C, 1h, 51%. (e) R₁R₂NH, DMF, 80°C, 16h, 70–80%.

according to Scheme 1. Reaction of 2-iso-propyl thiophenol with 1-fluoro-2-trifluoromethyl-4-acetyl benzene 5 under basic conditions gave the diaryl sulfide 6, which was converted to the β -ketoester 7 by treating with diethyl carbonate under basic conditions. Condensation of 7 with formamidine gave the hydroxyl-pyrimidine 8 in low yield. The key common intermediate, chloropyrimidine 9, was then obtained by treating 8 with phosphoryl chloride. Displacement of the chloride of 9 with a selected set of amines was carried out in a parallel synthesis mode to rapidly prepare a set of analogs 10a-x.

The LFA-1/ICAM-1 antagonist activity of 10a-x is summarized in Table 1.¹⁰ The decision to fix the A-ring substitution as o-iso-propyl and B-ring substitution as o-trifluoromethyl (ortho to the sulfur) was based on the SAR results of the cinnamide series, as was the selection of the amines. ^{4,6} Where a direct comparison is available, the data (Table 1) indicated that the pyrimidine ring of 10 is a reasonable isostere of the *trans*-cinnamide moiety of 1, even though the potency is typically reduced by 2to 4-fold. Thus, compound 10a showed an IC₅₀ of 200 nM, comparing to 60 nM for the corresponding trans-cinnamide analog, compound 10e exhibited an IC₅₀ of 320 nM, comparing to 80 nM for the corresponding trans-cinnamide analog, and compound 10w showed an IC₅₀ of 680 nM, comparing with 480 nM for the corresponding trans-cinnamide analog. Consistent with the

SAR of the cinnamide series, 4,6 substitution on the amino nitrogen of 10 with acidic residues, such as in 10m, 10n, 10o and 10p, gave more potent inhibitors.

We then turned our attention to 2-amino-4-(p-arylthio)phenyl-pyridines. Three different series of pyridine derivatives were synthesized, with the B ring substitution fixed as trifluoromethyl ortho to the sulfur, and the A ring being o-iso-propylphenyl (16a-ab), o-methoxyphenyl (17a-p) and 3,4-ethylenedioxyphenyl (18a-p). These compounds were synthesized as illustrated in Scheme 2. The pyridyl biaryl 12 was prepared via the Suzuki coupling of pyridine-4-boronic acid with 1-fluoro-2-trifluoromethyl-4-bromo benzene. Oxidation of 12 with hydrogen peroxide catalyzed by methyltrioxorhenium (VII) gave the N-oxide 13, which was reacted with appropriate thiophenols to give the diaryl sulfide pyridine oxides 14a-c. Treating 14a-c with phosphoryl chloride gave 2-chloropyridines 15a-c. Displacement of the chloride of 15a-c with a set of selected amines gave the desired compounds 16a-ab, 17a-p and 18a-p.

The LFA-1/ICAM-1 antagonist IC₅₀'s of the representative pyridine derivatives were shown in Tables 2 and 3. In the *o-iso*-propyl phenylthio series (**16**), comparison of **16t** and **16x** with the corresponding *trans*-cinnamide analogs (Table 2) revealed that the pyridine derivatives were essentially equipotent with the analogous *trans*-

Table 1. Structure–activity relationships of 4-amino-6-(p-arylthiophenyl)-pyrimidines

Compound	$-NR_1R_2$	IC ₅₀ (nM) ^a LFA-1/ICAM-1	Compound	$-NR_1R_2$	IC ₅₀ (nM) ^a LFA-1/ICAM-1
10a	O N N	200 (60 nM) ^c	10m	O N OH	120 ^b
10b	O N O	470	10n	Σ _ξ N OH	120 ^b
10c		420	10o	N-N NH	108 ^b
10d	N N	1270	10p	ZN N N N H	51 ^b
10e	Z _Z N O	320 (80 nM) ^c	10q	52N N	620
10f	Z _Z N \	490	10r	52N OH	230 ^b
10g	52N	740	10s	ZN OH	230 ^b
10h	ا گر N ✓	680	10t	5√N N	300
10i	H N	760	10u	Syn N N	220 ^b
10j	OH	228 ^b	10v	ZN NO	550
10k	NH ₂	340	10w	HO J	680 (480) ^c
10L	$\bigcap_{\Sigma_2 N} \bigcap_{N \mapsto 1} NH_2$	230	10x	-2 ₂ N OH	158

^a The IC₅₀ reported is the result of single determination unless noted.

cinnamides. Further analysis of the data showed that the pyridine derivatives 16 (Table 2) were typically ~ 3 -times more potent than the the analogous pyrimidine derivatives 10 (Table 1), as indicated by the comparison of 16g with 10j, 16j with 10m, 16k with 10m, 16m with 10o, 16n with 10L and 16z with 10u. The data (Table 2) also indicated a strong preference for polar and acidic substituents on the amino nitrogen. Thus, compounds

with hydrophobic substituents at this position (16b–f, 16o–r) were essentially inactive, while several compounds with acidic substituents (16j, 16k, 16L, 16m and 16y) showed IC₅₀ < 50 nM, consistent with the previous reports on the *trans*-cinnamides.^{4,5} The data for the *o*-methoxyphenylthio series (17) and 3,4-ethylenedioxyphenylthio series (18) in Table 3 similarly indicated that 2-aminopyridine derivatives were good mimics of

^b Average of two determinations.

^c Number in parenthesis is the IC₅₀ of the corresponding trans-cinnamide analog.

Scheme 2. (a) Pyridine-4-boronic acid, n-PrOH, H₂O, Pd(OAc)₂, Ph₃P, reflux, 4h, 82%. (b) CH₃ReO₃, H₂O₂, CH₂Cl₂, rt, 16h, 94%. (c) Cs₂CO₃, DMA, thiophenol, 100 °C, 16h, 77–90%. (d) POCl₃, 100 °C, 10h, 60–82%. (e) R₁R₂NH, DMSO, 140 °C, 16h, 60–85%.

Table 2. Structure-activity relationships of 2-amino-4-[3'-trifluoromethyl-4'-(o-iso-propylphenylthio)]-pyridines

$$S$$
 R_1
 R_2
 R_2
 R_2
 R_2

Compound	$-NR_1R_2$	IC ₅₀ (nM) ^a LFA-1/ICAM-1	Compound	$-NR_1R_2$	IC ₅₀ (nM) ^a LFA-1/ICAM-1
16a	N.	250	160	ZN N	58% inhi. @ $1\mu\text{M}$
16b	½N)	1000	16p	ZN N	54% inhi. @ 1μM
16c	-\$·N	34% inhi. @ $1\mu\text{M}$	16q	ZN N	21% inhi. @ 1μM
16d	ZN	40% inhi. @ $1\mu\text{M}$	16r	ZN N	0% inhi. @ 1 μM
16e	ZN	8% inhi. @ $1\mu M$	16s	N H	165
16f	ZN	22% inhi. @ $1\mu M$	16t	ZN N	93 (60) ^b
16g	Ŋ, OH	76	16u	ZN N	40% inhi. @ 1 μM
16h	S N OH	160	16v	Z-N N	82% inhi. @ 1 μM
16i	St.N OH	160	16w	OH Z ₁ N	93
16 j	CO ₂ H	42 (50) ^b	16x	NOH CH	264 (480) ^b
16k	ZN CO2H	43 (30) ^b	16y	n ₂ N CO ₂ H	26

Table 2 (continued)

Compound	$-NR_1R_2$	IC ₅₀ (nM) ^a LFA-1/ICAM-1	Compound	$-NR_1R_2$	IC ₅₀ (nM) ^a LFA-1/ICAM-1
16L	OH CO ₂ H	43	16z	HNOO	62
16m	N-N NH	51	16aa	OH CO ₂ H	90
16n	O NH ₂	73	16ab	N O	112

 $^{^{\}text{a}}\,\text{The IC}_{50}\mbox{'s}$ are the results of single determination.

 Table 3. Structure–activity relationships of 2-amino-4-(p-arylthio)phenyl-pyridines

Compound	$-NR_1R_2$	IC ₅₀ (nM) ^a LFA-1/ICAM-1	Compound	$-NR_1R_2$	IC ₅₀ (nM) ^a LFA-1/ICAM-1
17a 18a	ŎΗ √y _z N ✓	77 126	17i 18i	N OH	111 132
17b 18b	Z.N. DH	331 510	17j 18j	NH ₂	140 140
17c 18c	CO ₂ H	80 147	17k 18k	CO ₂ H	113 71 (50) ^b
17d 18d	HN	88 112	17L 18L	Z ₂ N CO ₂ H	122 76 (30) ^b
17e 18e	OH CO ₂ H	214 192	17m 18m	5 ₂ N	900 747
17f 18f	N O	88 168	17n 18n	O N H	186 351
17g 18g	OH	128 300	17o 18o	N N N O	121 131 (60) ^b
17h 18h	∑ _Z N OH	80 390	17p 18p	3,N N	168 365

 $^{^{\}mathrm{a}}$ All the IC50's are the average of two determinations.

the *trans*-cinnamides **1**. However, the *o*-methoxy- and the 3,4-ethylenedioxy-substitution on the A ring appears to be less optimal than the *o-iso*-propyl.

We also examined five-membered ring heterocycles as the replacement of the *trans*-cinnamide moiety of 1.

A set of thiazole derivatives were synthesized according to Scheme 3, involving the bromination of disulfide methyl ketone 6 and condensation of the resulting α -bromomethyl ketone with thioureas to give the desired 2-amino-4-(p-arylthio)phenyl-thiazoles **20a**-**d**. The LFA-1/ICAM-1 antagonist activity of representative

^b Number in parenthesis is the IC₅₀ of the corresponding *trans*-cinnamide analog.

^b Number in parenthesis is the IC₅₀ of the corresponding *trans*-cinnamide analog.

Table 4. Structure–activity relationships of 2-amino-4-(*p*-arylthio)-phenyl-thiazoles

			112
Compound	X	$-NR_1R_2$	IC ₅₀ (nM) ^a LFA-1/ICAM-1
20a	S	Solve No.	3000 (60) ^b
20b	S	ZN	40 % inhi. @ 20 μM
20c	S	$S^{1}N$ N O	12,000
20d	S	is, NO	10,500
21a	O	O N ZN	2500 (60) ^b
21b	О	S ₂ N	15,000
21c	O	Z _Z N O	3600

^a All the inhibition data are the average of two determinations.

thiazole derivatives (Table 4) clearly indicated that the 2-amino-thiazole moiety is not a good isostere of the *trans*-cinnamide of 1. A small set of oxazole derivatives (21a-c) were also prepared and found much less potent

than the corresponding *trans*-cinnamides (Table 4). The fact that five-membered ring heterocycles gave much less active compounds is likely due to the fact that five-membered ring heterocycles as in 20a-d or 21a-c do not mimic the geometry of *trans*-cinnamide as closely as six-membered ring as in 10 or 16–18. However, an electronic effect cannot be ruled out, since the location of the N atom in the heterocycles of 20a-d and 21a-c has been shifted. Properly substituted pyrrole, imidazole or pyrazole would resolve this ambiguity.

Compound 10n and 10p were tested in a cell-based adhesion assay measuring the adherence of LFA-1 expressing JY8 cells to immobilized ICAM-1, giving a EC_{50} of 90 nM and 20 nM, respectively.

In summary, we have established 2-amino-4-phenyl pyridine and, to a lesser extent, 4-amino-6-phenyl pyrimidine as isosteres of *trans*-cinnamide moiety, leading to the identification of 4-amino-6-(*p*-arylthio)-phenyl-pyrimidines and 2-amino-4-(*p*-arylthio)phenyl-pyridines as potent antagonists of LFA-1/ICAM-1 binding.

References and notes

- 1. Springer, T. A. Cell 1994, 76, 301.
- 2. Gahmberg, C. G. Curr. Opin. Cell Biol. 1997, 9, 643.
- 3. Liu, G. Exp. Opin. Therap. Patents 2001, 11, 1383.
- 4. Liu, G.; Link, J. T.; Pei, Z.; Reilly, E. B.; Leitza, S.; Nguyen, B.; Marsh, K. C.; Okasinski, G. F.; von Geldern, T. W.; Ormes, M.; Fowler, K.; Gallatin, M. J. Med. Chem. 2000, 43, 4025.
- Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly, E. B.; Okasinski, G. F.; Fesik, S. W.; von Geldern, T. W. J. Med. Chem. 2001, 44, 1202.
- Pei, Z.; Xin, Z.; Liu, G.; Li, Y.; Reilly, E. B.; Lubbers, N. L.; Huth, J. R.; Link, J. T.; von Geldern, T. W.; Cox, B. F.; Leitza, S.; Gao, Y.; Marsh, K. C.; DeVries, P.; Okasinski, G. F. J. Med. Chem. 2001, 44, 2913.
- 7. Winn, M.; Reilly, E. B.; Liu, G.; Huth, J. R.; Jae, H.-S.; Freeman, J.; Pei, Z.; Xin, Z.; Lynch, J.; Kester, J.; von

Scheme 3. (a) (n-Bu)₄NBr₃, MeOH, CH₂Cl₂, rt 16h, 100%. (b) H₂NC(S)NR₁R₂, DMF, rt 16h, 40–90%. (c) H₂NC(O)NR₁R₂, DMF, 100 °C, 24h, 20–60%.

^b Number in parenthesis is the IC₅₀ of the corresponding *trans*-cinnamide analog.

- Geldern, T. W.; Leitza, S.; DeVries, P.; Dickinson, R.; Mussatto, D.; Okasinski, G. F. *J. Med. Chem.* **2001**, *44*, 4393
- Link, J. T.; Sorensen, B.; Liu, G.; Pei, Z.; Reilly, E. B.; Leitza, S.; Okasinski, G. *Bioorg. Med. Chem. Lett.* 2001, 11, 973.
- 9. All the compounds used for biological testing were purified by reverse-phase HPLC. The identity and purity were established by ¹H NMR and MS spectra and HPLC analysis.
- 10. The LFA-1/ICAM-1 binding assay and the JY-8 cell adhesion assay were described in Ref. 4.